

Pong Tutorial

PART 1: SETTING UP YOUR GAME

Adding a Project Name and Setting a Default Scene Size

When you first open GameSalad, you’ll see the GameSalad Dashboard.
From this winder, you can start a new project, open a recent project, or open one of our templates to examine the
logic and Behaviors used.

In this tutorial, we’re going to start with the Pong starter template. This will have all of our assets (art and sound
files) already imported for us!

1. Click on ‘New…’ in the upper left hand side of the window to see the list of templates you can start
from.

2. In the list of templates shown, click on the ‘Pong’ starter project. GameSalad will import this into
your Project Library! You should see a message pop up in the bottom left of the browser to inform
you that your template is being prepared.

3. When it’s done, you should see another message telling you that you have new projects available in
your Project Library.

4. To access the Project Library, click on ‘My Projects’ from the list of tabs on the left. You should
now see a project listed with the name ‘pong’ at the top of the list.

5. Click on the project to open it in GameSalad! When you open your project, you will see the Scene
Editor.

6. Click on the Scenes tab in the Library. Notice that the ‘Initial Scene’ is already active in the Library.

7. Rename the scene by double clicking on the text “Initial Scene” in the Stage Bar. We’re going to call this scene
“Gameplay”.

Adding a Background

Next, let’s add a background to our project.

1. Click the Actors tab in the Library.
2. Click the ‘+’ icon to the right of the Search Bar to create a new actor.

3. Click on the newly created actor to navigate to the Actor Editor for this specific actor.

4. In the Inspector on the right hand side, locate the ‘Name’ Attribute and change the name of the actor to
‘Background’.

5. Click the Images tab in the Library and locate the “background” image.
6. Drag the image on top of the white square in the top right of the Inspector. Release the

mouse button to apply the image to the actor.

7. Locate the ‘Size’ Attributes in the Inspector.

8. Make sure the ‘Width’ is ‘1024’ and the ‘Height’ is ‘768’.

9. Navigate to the Scene Editor for ‘Gameplay’ by clicking the Scenes tab in the Library and
then clicking on the ‘Gameplay’ Scene.

10. Click the Actors tab in the Library to activate it. Click and drag the ‘Background’ actor onto
the Scene and position it so that it is centered on the scene. NOTE: If you have a small
computer scene, you can use the Zoom In/Out button in the top right of the Stage Bar to
zoom out of the Scene to see it in its entirety.

Creating the Paddles

Next, let’s create the paddles (what the players of our game will be controlling).

1. Click the Actors tab in the Library.
2. Click the ‘+’ icon to the right of the Search Bar to create a new actor.

3. Click on the newly created actor to navigate to the Actor Editor for this specific actor.

4. In the Inspector on the right hand side, locate the ‘Name’ Attribute and change the name of the actor to

‘LeftPaddle’.

5. Click the Images tab in the Library and locate the “paddleOrange” image.
6. Drag the image on top of the white square in the top right of the Inspector. Release the

mouse button to apply the image to the actor.

7. Locate the ‘Size’ Attributes in the Inspector.

8. Make sure the ‘Width’ is ‘128’ and the ‘Height’ is ‘128’.

9. Add a rule to the leftPaddle actor. This can be done in two ways:

a. Locate the ‘Rule’ behavior inside the Behaviors tab of the Library, and drag it into
the Logic Stack.

b. Click the blue ‘Add Rule’ button located in the Logic Stack Bar.

10. Rename the newly created Rule by double clicking on the word ‘Rule’ in the
Rule header. Rename it to ‘Rule: Move Up’.

11. Click on the first dropdown button in the rule (currently with ‘mouse pointer’ selected)
and choose the ‘keyboard key’ option.

12. Click in the blank field and press the up arrow key to set it as the keyboard key to be

used in the condition.

13. Click on the Behaviors tab in the Library to open the prebuilt Behaviors
available to us. Locate the ‘Move’ Behavior in the list.

14. Drag the ‘Move’ Behavior into the ‘Then’ section of your Rule.

15. Set the direction for the Move Behavior to ‘90’. This will cause the LeftPaddle Actor to
move upward when the up arrow key is pressed.

16. Now that we have some logic in our ‘LeftPaddle’ actor, let’s add it to the
scene.

17. Click on the Scene tab in the Library. Click on the ‘Gameplay’ scene to open
the Scene Editor.

18. Click on the Actors tab in the Library if it is not already active. Drag the
‘LeftPaddle’ actor onto the scene and position it towards the left side.

19. Preview the game by clicking the green Preview Game button in the top
right of the tool. This will open the ‘Preview Player’.

20. Press the up arrow key to make sure that the paddle moves up correctly.

Next let’s add downward movement for the paddle. This will be very similar to the Move Up rule we
just created.

21. Click on the Actors tab in the Library and then click on the ‘LeftPaddle’
actor to open the Actor Editor.

22. Add a rule to the LeftPaddle actor by clicking the blue ‘Add Rule’ button in the upper
right of the Logic Stack Bar.

23. Rename the newly created Rule by double clicking on the word ‘Rule’ in the
Rule header. Rename it to ‘Rule: Move Down’.

24. Click on the first dropdown button in the rule (currently with ‘mouse pointer’ selected)
and choose the ‘keyboard key’ option.

25. Click in the blank field and press the down arrow key to set it as the keyboard key to be
used in the condition.

26. Click on the Behaviors tab in the Library to open the prebuilt Behaviors
available to us. Locate the ‘Move’ Behavior in the list.

27. Drag the ‘Move’ Behavior into the ‘Then’ section of your Move Down Rule.

28. Set the direction for the Move Behavior to ‘270’. This will cause the LeftPaddle Actor to
move upward when the down arrow key is pressed.

29. Preview the game again by clicking the green preview button in the upper
right of the Actor Editor to make sure that the paddle moves up and down
correctly when the up and down arrow keys are pressed.

Next let’s create the RightPaddle actor.

30. Click the Actors tab in the Library and click the ‘+’ icon to the right of the Search Bar to create a new
actor.

31. Click on the newly created actor to navigate to the Actor Editor for this specific actor.

32. In the Inspector on the right hand side, locate the ‘Name’ Attribute and change the name of the actor to
‘PaddleRight’.

33. Click the Images tab in the Library and locate the “paddleRight” image.
34. Drag the image on top of the white square in the top right of the Inspector. Release the

mouse button to apply the image to the actor.

35. Locate the ‘Size’ Attributes in the Inspector and make sure the ‘Width’ is ‘128’, and the
‘Height’ is ‘128’.

36. Navigate to the Scene Editor for ‘Gameplay’ by clicking the Scenes tab in the Library
and then clicking on the ‘Gameplay’ Scene.

37. Drag the RightPaddle Actor onto the Scene and place it on the right side so that it’s

opposite the LeftPaddle.

38. Click on the Actors tab in the Library and select the LeftPaddle to open the Actor Editor

for it.

39. Select the Move Up and Move Down rules (by left clicking them while holding the shift
key down).

40. Use the keyboard shortcut to copy them (control + c if you’re on Windows or command
+ c if you’re on Mac). You should see a notification in the bottom left telling you that the
behaviors have been copied.

41. Click on the Actors tab in the Library and select the RightPaddle to open the Actor

Editor for it.

42. Use the keyboard shortcut to paste the behaviors you just copied (control + v if you’re on
Windows or command + v if you’re on Mac).

43. Now the RightPaddle Actor should have Move Up and Move Down rules.

44. Preview the game to make sure that both paddles move up and down when you press the

up and down arrow keys.

Creating the Ball and Adding Collisions

Now that we have the paddles working, let’s add the ball.

1. Click the Actors tab in the Library and click the ‘+’ icon to the right of the Search Bar to create a new
actor.

2. Click on the newly created actor to navigate to the Actor Editor for this specific actor.

3. In the Inspector on the right hand side, locate the ‘Name’ Attribute and change the name of the actor to
‘Ball’.

4. Click the Images tab in the Library and locate the “ball” image.
5. Drag the image on top of the white square in the top right of the Inspector. Release the

mouse button to apply the image to the actor.

6. Locate the ‘Size’ Attributes in the Inspector and make sure the ‘Width’ is ‘40’, and the
‘Height’ is ‘40’.

By default, the ball isn’t going to do anything, so let’s make it move at the start of the game!
7. Click on the Behaviors tab in the Library and locate the change attribute Behavior.

8. Drag the change attribute Behavior into the Logic Stack for the Ball actor.

9. Double click on the title of the behavior to rename it. Rename it ‘Change Attribute:

Serve the Ball’.

10. Click in the blank field labeled ‘select attribute’ and choose self > motion > linear

velocity > x. (this is the attribute that controls the left/right movement of the actor)

11. In the blank ‘to’ field, type 300. This behavior will cause the Ball Actor to set its linear

velocity x value to 300 at the start of the game, which will cause it to move directly to
the right at a speed of 300.

12. Navigate to the Scene Editor for ‘Gameplay’ by clicking the Scenes tab in the Library and then clicking

on the ‘Gameplay’ Scene.

13. Select the Actors tab in the Library and locate the Ball Actor.
14. Drag the Ball Actor onto the scene between the two paddles.

Click the green Preview button in the upper right hand corner of the Scene Editor to Preview the
game and see how the actors behave.

You should notice that the Ball starts moving to the right immediately, but passes right through
the paddle. Let’s fix that!

1. Click the Actors tab in the Library and click the ‘RightPaddle’ Actor to open the Actor Editor for it.

2. Click on the Behaviors tab in the Library and locate the collide Behavior.

3. Drag the collide Behavior into the Logic Stack.

4. Rename the collide behavior ‘Collide: With the Ball’

5. Click in the blank field of the collide Behavior and select the Ball actor.

We need to make sure we add the same behavior for the LeftPaddle as well!

6. Click the Actors tab in the Library and click the ‘LeftPaddle’ Actor to open the Actor Editor for it.

7. Click on the Behaviors tab in the Library and locate the collide Behavior.
8. Drag the collide Behavior into the Logic Stack.

9. Rename the collide behavior ‘Collide: With the Ball’

10. Click in the blank field of the collide Behavior and select the Ball actor.

Preview the game again to see how it behaves now with the collisions added.

You should see the ball correctly collide with the paddles, but in doing so, it pushes the paddles
off the screen and makes them rotate. We can fix these results through editing some physics
attributes for the paddles and ball actors.

11. Click on the Actors tab in the Library and click on the RightPaddle Actor to open the
Actor Editor.

12. In the Inspector on the right side of the screen, locate the section labeled ‘Physcis’ near
the bottom.

13. Click on the Physics section to expand the list of Physics attributes for this actor.

14. Change the Density attribute from ‘1’ to ‘1000’. This will make this actor act like it
weighs a lot more than the ball. (maybe talk about the definition of density here)

15. Change the Friction attribute from ‘3’ to ‘0’. This will make sure that the ball doesn’t
slow down after bouncing off the paddle.(maybe talk about the definition of friction here)

16. Click in the box next to the Fixed Rotation attribute to turn it on.

Preview the game again to make sure that the ball can no longer push the right paddle when they
collide. Let’s make sure to update these same attributes in the LeftPaddle Actor too so that it
behaves the same way.

17. Click on the Actors tab in the Library and click on the LeftPaddle Actor to open the
Actor Editor.

18. In the Inspector on the right side of the screen, locate the section labeled ‘Physcis’ near
the bottom.

19. Click on the Physics section to expand the list of Physics attributes for this actor.

20. Change the Density attribute from ‘1’ to ‘1000’. This will make this actor act like it
weighs a lot more than the ball.

21. Change the Friction attribute from ‘3’ to ‘0’. This will make sure that the ball doesn’t
slow down after bouncing off the paddle.

22. Click in the box next to the Fixed Rotation attribute to turn it on.

Preview the game again to make sure that the ball doesn’t push either of the paddles off the
screen.

There’s a couple more physics attributes we should edit in the Ball Actor as well before we move
on.

23. Click on the Actors tab in the Library and click on the Ball Actor to open the Actor
Editor.

24. In the Inspector on the right side of the screen, locate the section labeled ‘Physcis’ near
the bottom.

25. Click on the Physics section to expand the list of Physics attributes for this actor.

26. Change the Friction attribute from ‘3’ to ‘0’. This will make sure that the ball doesn’t
slow down after bouncing off the paddle.

27. Click on the Collision Shape dropdown box, and change it to ‘Circle’. This will cause the
Ball actor to act like a circle when it collides with other actors as opposed to acting like a
square.

Preview the game again to make sure everything is behaving correctly. You may have noticed if
you hit the ball up or down at all that it just flies off the screen instead of staying where we can
see it.

Let’s add a couple walls to fix that.

28. Click on the Actors tab in the Library and click the ‘+’ button next to the search bar to
create a new Actor.

29. Click on the newly created actor to open the Actor Editor.
30. Locate the ‘name’ attribute for the actor in the inspector over on the right side of the

screen, and rename the actor to ‘Wall’.

31. Click on the behaviors tab in the Library and locate the collide behavior.
32. Drag the collide behavior into the logic stack to add it to the wall actor
33. Rename the behavior to “Collide: With the Ball”
34. Click in the blank field of the collide behavior and select the Ball actor form the list that

appears.

35. Click on the scene tab in the library and select the Gameplay scene to open the Scene

Editor.
36. Drag an instance of the wall actor onto the scene and position it to the right of the ball

actor. This is so we can see how they interact with each other when they collide.

Preview the game to see if the wall is working how we want it to. You should notice that the wall
gets pushed back by the ball like our paddles were earlier. Let’s fix this through the physics
attributes in the wall actor.

37. Click on the actors tab in the Library and select the wall actor.

38. In the inspector on the right side of the screen scroll down and locate the list of physics
attributes for the actor.

39. Click on the list of physics attributes to expand it.

40. Change the friction attribute to ‘0’.
41. Click the box next to the movable attribute to turn it off (since we don’t want our walls to

move at all).

Preview the game again to make sure the wall is working as expected. Now that the walls are
working correctly, let’s position them on the scene.

42. Click on the scene tab in the library and select the Gameplay scene to open the Scene

Editor.
43. Resize the wall actor currently on the scene so that it’s as wide as the scene and position

it just outside the camera on the top of the scene. (Note: you may need to use the arrow
keys with the actor selected to nudge it up outside of view).

44. Drag another wall actor onto the scene from the actors tab in the library.
45. Resize the new wall so that it’s as wide as the scene and position it just outside the

camera on the bottom of the scene. (Note: you may need to use the arrow keys with the
actor selected to nudge it down outside of view).

Now that we have walls to stop the ball from going off the top or bottom of the screen, we’ll
need something to handle when the ball goes past one of the paddles.

Adding a Score System

1. Click on the Actors tab in the Library and click the ‘+’ button next to the search bar to
create a new Actor.

2. Click on the newly created actor to open the Actor Editor.
3. Locate the ‘name’ attribute for the actor in the inspector over on the right side of the

screen, and rename the actor to ‘Goal for Left Paddle’.

4. Click on the scene tab in the library and select the Gameplay scene to open the Scene

Editor.
5. Drag an instance of the Goal for Left Paddle actor onto the scene.
6. Resize it to be the height of the scene and position it just off the screen on the right side.

(This actor will serve as the goal that the paddle on the left is aiming for)

7. Click on the Actors tab in the Library and click the ‘+’ button next to the search bar to

create a new Actor.
8. Click on the newly created actor to open the Actor Editor.
9. Locate the ‘name’ attribute for the actor in the inspector over on the right side of the

screen, and rename the actor to ‘Goal for Right Paddle’.

10. Click on the scene tab in the library and select the Gameplay scene to open the Scene

Editor.
11. Drag an instance of the Goal for Right Paddle actor onto the scene.
12. Resize it to be the height of the scene and position it just off the screen on the left side.

(This actor will serve as the goal that the paddle on the right is aiming for)

Now that we have our goal actors created, let’s go ahead and add the logic to make them work.

13. Click on the actors tab in the library and select the ball actor to open the actor editor.
14. In the inspector on the right side of the screen, click the game tab (this will show you all

the current game level attributes that exist in the project).

15. Click the ‘+’ button to the right of the search bar in the inspector to create a new integer

attribute.

16. Scroll down to the bottom of the list of attributes to see the new one you just created and

double click on the name ‘new attribute’ to rename it. Rename it to LeftScore.

17. Click the ‘+’ button again to create another integer attribute, and rename it RightScore.

18. Add a rule to the ball actor by clicking the blue add rule button across the top of the logic

stack.

19. Rename the rule to ‘Rule: Left Paddle Scored’.

20. Change the condition of the rule from ‘mouse pointer’ to ‘overlaps or collides’.

21. Click in the blank condition field and select the Goal for Left Paddle actor from the list.

22. Locate the change attribute behavior and drag that into the Left Paddle Scored rule.
23. Rename the Change Attribute Behavior to ‘Change Attribute: Increase LeftScore’

24. Click in the first blank field for the change attribute behavior and select game.LeftScore

as the attribute to change.

25. Click the open parenthesis ‘(‘ to convert the next field to an expression, then click on the

empty field to open the expression editor.

26. Add the expression ‘game.LeftScore + 1’ to the expression editor and click the update

button to save it.

27. Drag a destroy behavior into the Left Paddle Scored rule, beneath the change attribute

behavior.

Now when the ball collides with the Goal for Left Paddle actor, the ball will increase the
LeftScore attribute by 1 and destroy itself. Let’s set up the same kind of rule so that the right
paddle can score too.

28. Add a rule to the ball actor by clicking the blue add rule button across the top of the logic
stack.

29. Rename the rule to ‘Rule: Right Paddle Scored’.

30. Change the condition of the rule from ‘mouse pointer’ to ‘overlaps or collides’.
31. Click in the blank condition field and select the Goal for Right Paddle actor from the list.

32. Locate the change attribute behavior and drag that into the Right Paddle Scored rule.
33. Rename the Change Attribute Behavior to ‘Change Attribute: Increase RightScore’

34. Click in the first blank field for the change attribute behavior and select game.RightScore

as the attribute to change.

35. Click the open parenthesis ‘(‘ to convert the next field to an expression, then click on the

empty field to open the expression editor.
36. Add the expression ‘game.RightScore + 1’ to the expression editor and click the update

button to save it.

37. Drag a destroy behavior into the Right Paddle Scored rule, beneath the change attribute

behavior.

Now that we have our logic all set up, we should test it. But in order to test it we’ll need to have
some form of display that shows both of our score attributes.

38. Click on the Actors tab in the Library and click the ‘+’ button next to the search bar to
create a new Actor.

39. Click on the newly created actor to open the Actor Editor.
40. Locate the ‘name’ attribute for the actor in the inspector over on the right side of the

screen, and rename the actor to ‘Score Display’.

41. Click on the images tab in the library and locate the ‘scoreBar’ image.

42. Drag the ‘scoreBar’ image into the actor image area in the top part of the inspector to

give our actor that image.

43. In the inspector on the right (make sure you have the actor tab selected), double check

that the width is 724 and the height it 80.

44. Click on the behaviors tab in the library and locate the display text behavior.
45. Drag the display text behavior into the logic stack and rename it ‘Display Text: Left

Paddle Score’.

46. Click the quotes (‘’) button to change the text being displayed to an expression and click

the blank expression field to open the expression editor.
47. Add the attribute ‘game.LeftScore’ to the expression and click update to save it.

48. Click on the scene tab in the library and select the Gameplay scene to open the scene

editor.
49. Click on the actors tab in the library and drag an instance of the Score Display actor onto

the scene and position it in the middle of the screen, towards the top.

Preview the game to see how the score display looks with the default values. You should notice
that the text isn’t quite where we want it, and with the color being set to black, it’s very hard to
see the value.

50. Click on the actors tab in the library and select the Score Display actor.
51. Inside the display text behavior, for the first “place at” field (which represents the x

position of the text), fill in ‘-240’.

52. Change the size of the text to 45 so that it’s a little bigger.

53. Click on the black square to change the color of the text to orange (since this is the text

representing our left paddle which is also orange).

54. Copy and paste the display text behavior, and rename it “Display Text: Right Paddle

Score”.

55. Click in the expression field and change the attribute that we’re displaying to

“game.RightScore”.

56. Change the placement from ‘-240’ to ‘240’, and the color to blue.

Preview the game and let each paddle score to make sure that all the logic is working correctly
and that the scores are being displayed nicely.

Spawning More Balls

You may have noticed that once one of the paddle’s has scored, no new ball appears. Let’s fix
that!

1. Click on the actors tab in the library and select the Goal for Left Paddle actor.
2. Add a rule to the actor by clicking the blue add rule button across the top of the logic

stack.
3. Rename the rule to ‘Rule: Spawn Next Ball’.

4. Change the condition of the rule from ‘mouse pointer’ to ‘overlaps or collides’.
5. Click in the blank condition field and select the Ball actor from the list.

6. Click on the behaviors tab in the library and locate the timer behavior.

7. Drag a timer behavior into the then section of the rule.

8. Change the timer from ‘every’ to ‘after’, replace the seconds value with ‘2’, and check

the run to completion box.

9. In the behaviors tab of the library, locate the spawn actor behavior and drag it into the

timer.

10. Click the blank field of the spawn actor behavior and select the ball actor.

11. Set the x (left/right) value of the spawn actor behavior to ‘512’, the y (up/down) value to

‘384’.

12. Select relative to scene instead of relative to actor.

13. Select the rule and use the keyboard shortcut to copy it (control+c or command+c).
14. Click on the actors tab in the library and select the goal for right paddle actor.
15. Use the keyboard shortcut to paste the Span Next Ball rule into the actor (control+v or

command+v).

Preview the game and let both paddles score to make sure that a new ball is correctly spawning.

Adding AI for the Right Paddle

It’s not very fun having just one player control both paddles, so let’s make some logic to have
the right paddle played by the computer.

First, we’ll need to keep track of the balls x velocity (the direction it’s moving) and y position so
that the right paddle knows where it needs to move.

1. Click on the actors tab in the library and select the ball actor.
2. In the inspector (on the right side of the screen) click the game tab to view and create

game attributes.
3. Click the + button next to the search bar to create two new ‘real’ game attributes.
4. Rename them ‘BallXVelocity’ and ‘BallYPosition’.

5. In the behaviors tab of the library, locate the constrain attribute behavior. Drag it into the

logic stack (make sure it’s outside of any rules).
6. Rename the behavior to “Constrain Attribute: Track BallXVelocity”.

7. For the first attribute field, fill in game.BallXVelocity.

8. Click on the open parenthesis to convert the next field to an expression, and click on the

empty field to open the expression editor.
9. In the expression editor, fill in self.motion.linearVelocity.x and click update to save the

expression.

10. Drag another constrain attribute behavior into the logic stack and rename it “Constrain

Attribute: Track BallYPosition”.

11. For the first attribute field, fill in game.BallYPosition.

12. Click on the open parenthesis to convert the next field to an expression, and click on the

empty field to open the expression editor.
13. In the expression editor, fill in self.position.y and click update to save the expression.

Next we’ll need to rework the motion of the right paddle so that it’s not player controlled.

14. Click on the actors tab in the library and select the Right Paddle actor.
15. Inside the Move Down rule, delete the keyboard key condition.
16. Click in the blank condition selection field and select attribute comparison to add an

attribute condition.

17. Click inside the blank attribute field and select game.BallYPosition.

18. Change the ‘=’ to ‘<’ and click the open parenthesis to change the next field to an

expression.
19. Click on the blank expression field to open the expression editor.
20. Fill in self.position.y-64 and click the update button to save the expression.

64 is half of the paddles height, so self.position.y-64 is the y position of the bottom of the paddle.

21. Add another attribute comparison condition to the rule.

22. Click inside the blank attribute field of the rule and select game.BallXVelocity.
23. Change the ‘=’ to ‘>’ and fill in the new field with a ‘0’ (this means that the ball is

moving to the right).

24. Change the speed value of the move behavior inside the rule from 300 to 500.

We’re going to do similar steps with the Move Up rule as well.

25. Delete the keyboard key condition.
26. Click in the blank condition selection field and select attribute comparison to add an

attribute condition.
27. Click inside the blank attribute field and select game.BallYPosition.
28. Change the ‘=’ to ‘>’ and click the open parenthesis to change the next field to an

expression.
29. Click on the blank expression field to open the expression editor.
30. Fill in self.position.y+64 and click the update button to save the expression.

64 is half of the paddles height, so self.position.y+64 is the y position of the top of the paddle.

31. Add another attribute comparison condition to the rule.
32. Click inside the blank attribute field of the rule and select game.BallXVelocity.
33. Change the ‘=’ to ‘>’ and fill in the new field with a ‘0’ (this means that the ball is

moving to the right).

34. Change the speed value of the move behavior inside the rule from 300 to 500.

Preview the game and make sure the right paddle automatically moves up/down to catch the ball.
If the paddle isn’t moving, that’s because the paddle has no reason to move because the ball is
already on a path to collide with the paddle. Try moving the ball higher up the scene where the
AI paddle will need to move to hit it. You may notice that the paddle is moving a little fast,
which makes it hard to score against the computer.

What we can do to fix that is have the speed of the paddle set through an attribute, and decrease
the speed over time.

35. Inside the Actor Editor for the RightPaddle, locate the inspector section on the right side
of the screen.

36. Click on the game tab in the inspector, and click the + button to create a new ‘real’ game
attribute.

37. Rename the attribute to AISpeed and set the value to 500.

38. Inside the Move behavior that’s in the Move Down rule, change the speed value to an

expression (by clicking the open parenthesis).
39. Open the expression editor for the speed value, fill in game.AISpeed, and click the update

button to save the expression.

40. Inside the Move behavior that’s in the Move Up rule, change the speed value to an

expression (by clicking the open parenthesis).
41. Open the expression editor for the speed value, fill in game.AISpeed, and click the update

button to save the expression.

42. Add a timer to the logic stack by clicking the timer button in the logic stack bar.
43. Rename the timer to ‘Timer: Decrease Speed’.

44. Leave the type of timer set to ‘every’ and change the seconds value to ‘3’.

45. Select the behaviors tab in the library and locate the change attribute behavior. Drag one

into the timer.
46. In the first attribute field of the behavior, fill in game.AISpeed.

47. Convert the second field to an expression, and open the expression editor.
48. Type the expression ‘game.AISpeed – 20’ and click the update button to save it.

This will ensure that the computer controlled paddle slows down by 20 every 3 seconds. Preview
the game and make sure that the right paddle slows down over time. You may have noticed that
the paddle never speeds back up. Let’s fix that by resetting the AISpeed attribute when a goal is
made.

49. Open the actor editor for the Goal for Left Paddle actor.
50. Add a change attribute behavior beneath the spawn actor behavior inside the timer and

rename it ‘Change Attribute: Reset AISpeed’.

51. Select game.AISpeed for the first attribute field in the behavior, and fill in ‘500’ for the

second field.

52. Open the actor editor for the Goal for Right Paddle actor.
53. Add a change attribute behavior beneath the spawn actor behavior inside the timer and

rename it ‘Change Attribute: Reset AISpeed’.
54. Select game.AISpeed for the first attribute field in the behavior, and fill in ‘500’ for the

second field.

Preview the game again and wait for the paddle to slow down, then score a point to make sure
the speed resets.

Create Random Serving for the Ball

Right now the ball is always served directly to the right, which isn’t very exciting. Let’s change
it so that the ball is spawned in a random direction.

1. Open the actor editor for the Ball actor.
2. In in inspector on the right side of the screen (make sure the actor tab is selected), click

the + button next to the search bar to create a ‘real’ actor attribute.

3. Rename the attribute “DirectionToServe”.

4. Delete the change attribute behavior currently being used to serve the ball.
5. Add a new change attribute behavior to the top of the logic stack and rename it to

“Change Attribute: Choose Serve Direction”
6. For the first attribute field in the behavior select self.DirectionToServe.
7. Convert the second field to an expression and open the expression editor.
8. Set the expression to random(0,360) and click update to save the expression.

9. Add a timer to the bottom of the logic stack and rename it “Timer: Serve the Ball”.

10. Change the type of timer from “every” to “for” and set the seconds value to 1.

11. Add an accelerate behavior inside the newly created timer.
12. Change the direction field of the accelerate behavior into an expression and open the

expression editor.
13. Add the attribute “self.DirectionToServe” to the expression and click the update button to

save it.
14. Set the rate value of the accelerate behavior to 700.

Preview the game to make sure the ball is being served correctly in random directions. The ball
is likely going a little too fast, but we can fix this through the use of some motion attributes.

15. Inside the actor editor for the ball actor, locate and expand the list of motion attributes at
the bottom of the Inspector.

16. Set the Max Speed attribute to 300 and turn on the Enforce Max Speed attribute. (feel
free to play around with different speed values, but keep in mind that the faster the ball,
the faster the paddles should move to be able to keep up with it)

Preview the game again and make sure the ball is the speed that you want it to be.

Unsticking the Ball

Since we are serving any random angle from 0-360, it’s possible the ball will be serve straight
up, down, left, or right, causing the ball to be stuck in an endless back and forth movement.

As a fun test, try turning off the change attribute behavior inside the ball actor that’s setting the
DirectionToServe, and change the attribute manually to 0, 90, 180, and 270 to see how it gets
stuck.

To fix that we can add some rules to check when the ball is in, or close to, that state, and give it a
little nudge.

What attributes can we check to determine that the ball is in a stuck state? The linear velocity x
and y attributes for the ball of course! When the linear velocity x (left/right motion) is close to 0,
the ball will be bouncing straight up and down endlessly. The same goes for being stuck
left/right when the linear velocity y attribute is close to 0.

1. Open the actor editor for the Ball actor.
2. Add a rule to the logic stack by clicking the blue ‘Add Rule’ button located in the Logic

Stack Bar. Rename it “Rule: Stop Sticking Up/Down When Moving Right”.
3. Delete the mouse pointer condition inside the rule and add an attribute comparison

condition.
4. For the attribute field in the condition, select the attribute “self.motion.linearVelocity.x”.
5. Change the ‘=’ to ‘>=’.
6. Fill in ‘0’ for the second field.

7. Add another attribute comparison condition and select the self.motion.linearVelocity.x

attribute again.
8. This time change the ‘=’ to ‘<=’ and fill in ‘100’ for the second field.

These conditions will ensure that the rule runs when the ball has a low velocity (between 0 and
100) while moving to the right on the screen.

9. Add a change attribute behavior inside the Stop Sticking rule.
10. Select the ‘self.motion.linearVelocity.x’ attribute for the first field and convert the second

field to an expression / open the expression editor.
11. In the expression editor, fill in ‘self.motion.linearVelocity.x + 100’ and click the update

button to save it. (This will make sure that the new x velocity for the ball will be outside
the conditions for the rule)

We need another rule for when the ball has a low velocity, but is moving to the left.

12. Copy and paste the Stop Sticking rule you’ve made and rename it “Rule: Stop Sticking
Up/Down When Moving Left”.

13. Change the ‘>=’ to ‘<’ in the first condition.
14. Change the ‘<=’ to ‘>=’ and replace the ‘100’ with ‘-100’ in the second condition.

These conditions will ensure that the rule runs when the ball has a low velocity (between -1 and -
100) while moving to the right on the screen.

15. Open the expression editor for the change attribute behavior inside the Stop Sticking
when Moving Left rule and change it to “self.motion.linearVelocity.x-100”.

We need two very similar rules to handle when the ball gets stuck bouncing back and forth left
and right forever, but these will reference the self.linearVelocity.y attribute of the ball.

16. Add a new rule to the Logic Stack and rename it “Rule: Stop Sticking Left/Right When
Moving Up”.

17. Delete the mouse pointer condition inside the rule and add an attribute comparison
condition.

18. For the attribute field in the condition, select the attribute “self.motion.linearVelocity.y”.
19. Change the ‘=’ to ‘<=’.
20. Fill in ‘100’ for the second field.
21. Add another attribute comparison condition and select the self.motion.linearVelocity.y

attribute again.
22. This time change the ‘=’ to ‘>=’ and fill in ‘0’ for the second field.

These conditions will ensure that the rule runs when the ball has a low velocity (between 0 and
100) in an upward direction.

23. Add a change attribute behavior inside the Stop Sticking rule.
24. Select the ‘self.motion.linearVelocity.y’ attribute for the first field and convert the second

field to an expression / open the expression editor.
25. In the expression editor, fill in ‘self.motion.linearVelocity.y + 100’ and click the update

button to save it. (This will make sure that the new y velocity for the ball will be outside
the conditions for the rule)

We need another rule for when the ball has a low downward velocity as well.

26. Copy and paste the Stop Sticking rule you’ve made and rename it “Rule: Stop Sticking
Left/Right When Moving Down”.

27. Change the ‘<=’ to ‘>=’ and replace the ‘100’ with ‘-100’ in the first condition.
28. Change the ‘>=’ to ‘<’ in the second condition.

These conditions will ensure that the rule runs when the ball has a low downward velocity
(between -1 and -100).

29. Open the expression editor for the change attribute behavior inside the Stop Sticking
when Moving Down rule and change it to “self.motion.linearVelocity.y-100”.

Lastly, we need to place all the ‘Stop Sticking’ rules inside a timer that runs after 1 second. This
is to prevent them from running while the ball is accelerating (when we serve it).

30. Minimize all the Stop Sticking rules.

31. Hold down shift and click on each Stop Sticking rule to highlight all of them.

32. Once they’re all highlighted, click the timer button in the Logic Stack Bar to add a new

timer to the Logic stack with the selected rules inside it.

33. Rename it “Timer: Stop Sticking After the Serve”.
34. Change the ‘Every’ to ‘After’ and set the seconds value to ‘1’. Check the Run to

Completion box.
35. It should look like this when you’re done.

Try previewing the game after turning off the ‘Choose Serve Direction’ behavior inside the ball
actor that’s setting the DirectionToServe, and change the attribute manually to 0, 90, 180, and
270 to verify that it no longer gets stuck endlessly bouncing straight left/right or up/down. (Be
sure to turn the behavior back on when you’re done!)

Adding Polish

Sounds are an important part of any game and really bring them to life. Let’s add some sounds to
our project now!

1. Click on the Actors tab in the Library and select the LeftPaddle actor to navigate to the
Actor Editor.

2. In the Inspector on the right hand side, scroll down and locate the Tags section.

3. Click inside the Tags area and type “collidable” and hit Enter/Return on your keyboard.

We need to add the collidable tag to our RightPaddle and Wall actors as well.

4. Navigate to the Actor Editor for the RightPaddle actor and add the collidable tag to the
actor.

5. Navigate to the Actor Editor for the Wall actor and add the collidable tag to the actor.

6. Now that the collidable tag is applied to our actors, navigate to the Actor Editor for the

Ball actor.
7. Create a new rule and rename it “Rule: Play Collision Sound”.
8. Change the mouse pointer condition to overlaps or collides.
9. Change the actor of type option to actor with tag.
10. Inside the field, type “collidable”.

11. Add a play sound behavior to the rule.
12. Inside the Play Sound field, type “Hit_1” to add the sound to the behavior.

When the ball collides with any of the actors that contain the “collidable” tag, a sound will play.
Nice! Now let’s play another sound when one of the players score.

13. Navigate to the Actor Editor for the Goal for Left Paddle actor.
14. Create a new rule and rename it “Rule: Play Sound When Hit By Ball”.
15. Change the mouse pointer condition to overlaps or collides.
16. Inside the blank field, type “ball”.

17. Add a play sound behavior to the rule and play the “Chime32” sound.

18. Copy the rule and navigate to the Actor Editor for the Goal for Right Paddle actor.
19. Paste the rule in the Logic Stack.

Critical thinking exercise for AI

How do you create an AI that’s not impossible to beat?
How do you make one that’s also not too easy to beat?

(I.e just constraining the paddle’s y position to the y position of the ball would make it so that it
never misses, and is thus impossible to beat, and making a paddle that always misses the ball
would be too easy for the player.)

